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Abstract— Progress in Bio robotics has provided several 

ways to mimic the form and function of human limbs, 

thus allowing the scheme of better prostheses for 

amputees. This paper presents EMG based Human 

Machine Interface framework to estimate reference 

positions of a prosthetic arm for patients suffering from 

above elbow amputation. In the present study, a set of 

information about four basic motions regarding elbow 

flexion/extension along with the twist of radius and ulna 

referred as pronation/supination is acquired from bicep 

of a human arm. Upon muscle activation, the numerical 

data set points representing the electromyographic 

intentions were recorded using the Thalamic Labs 

product i.e. Myo Armband. To analyze these acquired 

signals, feature selection followed by feature extraction 

was done in order to classify the input data extracted 

from human muscle. Artificial Neural Network (ANN) is 

used for classification and the performance of four 

motion classification is evaluated. A mathematical model 

of kinematic of a trsanshumeral arm based on Denavit-

Hardenberg convention is presented using Matlab®. 

Analytical results of the forward kinematic model are 

verified using Matlab® PeterCorke® Robotic toolbox. A 

physical significance of proposed work is tested through 

the information of forward kinematics from Matlab® 

linked with that of Solid works simulated with reference 

to the EMG intentions captured and classified to 

generate the reference positions. The classification 

accuracy obtained from ANN i.e. 91.9% is found 

significant with p<0.01 for a group of ten healthy 

subjects. This verifies usability of the proposed 

technique. 

Keywords—Above Elbow Amputation, EMG, Kinematics, 

Myo Arm Band, ANN 

I. INTRODUCTION  

Evolution in the field of engineering has provided numerous 

solutions to complex problems. Advancements in the 

technology have revolutionized the concept of prosthesis[1]. 

The new problem that has emerged is to control such 

devices according to the dire need of the user i.e. moving 

the prosthetic arm towards a certain position with some 

specific speed and time duration[2, 3]. 

As the arm muscles contract, electrical signals are produced 

which are referred to as electromyographic signals. In order 

to capture such information, electrodes are engaged on the 

surface of the contracting muscles. The signals generated 

are proportional to the amount of activity detected at the 

flexed muscle. In the case of a trans-humeral amputee, the 

only functional muscles for signal acquisition in the arm are 

biceps, which make it suitable for the sensor to be set. As 

these fluctuations are different for each person at different 

position and time intervals, this becomes a disadvantage to 

work on control command generation, as the reference is 

non-linear and variable. For such a scenario, the 

implementation of machine learning techniques helps in 

determining the motion for the device. Most of the work 

done for myoelectric prosthetic arm generates a command 

for go or not go for a fixed type of motions [4]. This does 

not give an accurate position of a prosthetic arm. 

This paper presents a simple approach to estimate a 

reference position using EMG signals where the prosthetic 

arm has to reach. A prosthetic arm with 2 degrees of 

freedom is used to verify the proposed method. A 2 degree 

of freedom arm is as simple as a 2-R configuration 

manipulator. It is proposed to first simulate the system and 

analyze how it behaves in the real world rather than 

developing a prototype when one can virtually verify the 

work based on mathematical models and calculations.  

The machine learning method compromises supervised & 

unsupervised learning. For a known set of data, a model is 

trained such that it makes predictions for the new or 

incoming data based on the evidence of uncertainties present 

in the trained set of input data and the known responses. For 

acquiring EMG data from bicep muscles, Myo arm is used 

[6] as it is a low-cost consumer-grade EMG based device 

which integrates an ARM Cortex-M4 based microcontroller 

unit, eight dry EMG electrodes, a nine-axis inertial 

measurement unit (IMU) and a Bluetooth Low Energy 

(BLE) module. These EMG armbands have unlocked new 

possibilities for myoelectric control applications, which are 

not restricted to traditional prosthetics market. Applications 

have incorporated accessible game-based training for 

myoelectric prostheses [6,7], sport training systems[8, 9] 

and many others. Supervised learning uses a  classification 

technique that predicts discrete responses whereas 

regression technique predicts continuous responses to 

develop predictive models[10, 11]. Feature selection plays 

an important role in data classification as well as the 

paradigm followed for data extraction. As soon as the 

information is received at the controller end, the robotic 

replacement of human arm is considered to be in a specific 

position, as the healthy arm would be. For this purpose, the 

SolidWorks® model along with PeterCorke Toolbox® is 

used to simulate the reference positions generated using 

machine learning algorithm.  
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This paper presents a methodology and their results in two 

steps: First, EMG data acquisition & control command 

generation through data processing as given in section II, 

Second, the development of solid and kinematics model to 

simulate motion of the arm given the reference positions 

generated in the form of control commands as given in 

section III. 

II. EMG DATA ACQUISTION AND CONTROL COMMAND 

GENERATION 

The control commands for reference positions are generated 

through analysis of data acquisited. This section presents the 

experimental paradigm and setup, data acquisition, feature 

selection, classification and control command generation as 

given in following subsections. 

A. Experimental Paradigm 

EMG signals were acquired using MYO armband. It is an 

application-based wireless wearable device which includes 

eight EMG sensors and nine-axis IMU sensors. It recognizes 

muscle movements and raw EMG signals can be extracted 

using this device. In this research, the signal extraction 

process was done through the multiple chambers, integrated 

with the MYO armband. Initially, the patient wore the arm 

band in such a way that the front plane faces in the 

downward direction. At that time the armband has to be in 

sync with a computer through Bluetooth. After the band was 

properly synced, various chambers showed peaks that means 

it is collected at different positions respectively. To check 

whether the pods were activated, MYO diagnostics was 

used and it reported spikes on the pods when the sensors 

were triggered.  

As this research is explicitly for people suffering from 

transhumeral amputation so MYO armband was placed on 

the biceps muscle to capture EMG signals as illustrated in 

Figure 1. No change in electrode position was followed. 

Changing the electrode positions causes a disturbance as 

different muscles are activated which further gives 

information to predict the human arm motion. The change in 

electrode position also causes activation of the wrong 

electrode while the arm is in motion. EMG signals were 

captured using the MYO Armband in a defined range of 

elbow and wrist motion. The signals were then acquired 

using MYO Data Capture. 

The data of 10 healthy persons (7 males & 3 females) was 

extracted at arbitrary angles which include -80º, 0º, 80º span 

for extension and flexion movement of the elbow joint. This 

was conducted by analyzing bicep & triceps signals. The 

experimental paradigm used is shown in table 1. 

A sample of data is shown in Figure 2. This data is shown as 

EMG graphs . EMG graphs are active EMG signals at Mayo 

diagonostics. 

B. Signal Analysis 

A Microsoft Excel sheet was automatically generated as the 

sensor was synchronized followed by signal capturing 

application of the armband as soon as it was executed. The 

extracted signals were analyzed in MATLAB for further 

processing. Figure 3 represents the raw electromyographic 

signals extracted from healthy subjects. It also shows the 

electrodes activity upon any muscle action. 

Every instant, a reading at each electrode is plotted together 

in a graphical form. Each peak represents the different peak 

value obtained at that very instance on a certain electrode. 

 

 

Figure 1.Sensor Placement at Biceps to Acquire Signals and Calibration of 

four different motions including Elbow Extension, Elbow Flexion, Wrist 

Pronation and Supination 

 

Table 1:  Experimental Paradigm 

No. of Persons (7 male & 3 females) 10 

No. of trials 4 each person 

Resting Time (For the Arm Band) 5 minutes 

Time for signal extraction 20 sec (max) 

 

. 

 

Figure. 2. Active EMG Signals at Myo Diagnostics 
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Due to the muscle contraction and relaxation, different 

peaks were created which were caused by an action 

potential in which different results are generated which the 

MYO armband reads the electrical activity of their muscles. 

At every angle, about 8000 set points were collected, 

plotted, and analyzed. These steps were repeated repeatedly 

for every patient. A large number of results were collected. 

A larger number of data sets points aids in acquiring higher 

accuracies. 

These signals were then validated by finding the turning 

points i.e. where the signals peak or maximum threshold 

values were checked and analyzed if all the motions 

performed during signal acquisition were traceable or not.  

 

(a) 

 

(b) 

 

(c) 

C. Feature Selection  

EMG signals extracted from muscles need advanced methods 

for detection, decomposition, processing, and classification. 

Figure 4 represents the entire algorithm that was responsible 

for the signal acquisition until the control command 

generation. These signals represented raw data and contained 

noises and disturbances. It could not to be used directly to get 

accurate results. Instead, features were extracted from the 

acquired signals and they contribute to classify the signals. The 

extracted features included Mean Absolute Value, Variance, 

Waveform Length, Kurtosis and Peak among which only peaks 

& wavelength showed different behavior and significance 

checked using p-test.  

 

(d) 

 

(e) 

Figure 3. Raw EMG signals of a healthy subject at a) rest position b) Elbow extension c) Elbow flexion d)Wrist Pronation e) Wrist 

Supination 
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Figure 4.  EMG Signal Acquisition and Processing Algorithm 

D. Classification Algorithm (Artifical Neural Network) 

These two features were selected for classification. Different 

classifying techniques such as Linear Discriminant Analysis 

(LDA), Support Vector Machine (SVM), ANN (Artificial 

Neural Networking) are used in different applications to 

obtain good accuracies. Among such techniques, ANN is 

precisely experimented to obtain greater accuracy, more 

effective offline training and accurate classification. 

ANN is a technique that utilizes multiple neuron layers to 

map data from one distribution to another to allow for better 

and optimized classification [12]. This technique is 

implemented to yield state of the art results while using 

several layers giving rise to a deep neural network in its 

place. Figure 5 is a step by step representation of working 

boundaries of Artificial Neural Network [3]. 

A set of data was entered which passed through hidden 

nodes/layers before providing a certain output. Initially, it 

passed through hidden nodes, which comprises different 

activation functions. They made a decision based on certain 

input or some predicted value. Mostly, activation functions 

are non-linear. For this research, Relu was employed as an 

activation function for neurons. The weights were initialized 

using the Xavier distribution, the network utilized the Adam 

optimizer function for gradient descent and categorical cross 

entropy was used as a loss measure.  

 

 

Figure 5. Algorithm for Artificial Neural Networking 

For repeated validation, these activations were then directed 

back as input and cross check. This iterative process is 

referred to as Training. In the training segment, the exact 

class for each record was known by the supervised training 

& the output nodes, therefore, gave correct value i.e. "1" for 

the node corresponding to that particular class and "0" for 

the others. Table 2 represents the structure of raw data 

encoded. 

Error term was calculated from the correct output term.  In 

order to adjust the weights in the hidden layers, error terms 

came into action so that all being well, the next time around 

the output values was closer to the correct values.  

A confusion matrix was plotted which compare the input 

data set points. All the activation functions and their rates 

were tested and compared against different classifiers to 

acquire higher accuracy. 

After labeling the data as inputs & output by one hot 

encoding method, furthermore, these labeled signals were 

cruised to the classification steps as discussed earlier. These 

were then fed to the classifiers. The offline training accuracy 

obtained from ANN was presented in Matlab® and 

generated confusion matrix. The ANN was 91.9% accurate for 

the data of 10 healthy subjects. 
E. Control Command Generation 

 The control commands were generated as soon as the 

signals were classified depicting the position of the arm. The 

controller, after classifying the signals, generated control 

commands to actuate the motors so that the elbow and wrist 

joint motion provides the desired position.  

According to the human anatomy, when the biceps are 

activated, the brain is been told to move the elbow upward 

& when the triceps comes in action, it indicates that the arm 

is moving downwards from the elbow joint. Same as the 

human anatomy, the controller classified the signals by 

separating these two classes i.e. if the arm is moving 

upwards or downwards.  It then commands the motors to 

move in a clockwise direction or anti-clockwise direction. 

The pronation & supination command generation was 

carried out in the same way, but it was observed that the 

signals for this motion changed as the elbow joint was 

displaced more than 30 degrees.  

 

Table 2. Raw Data Encoding/Masking 

Class Label Encodings 

Class A (Extension) 0 0 0 0 1 

Class B (Flexion) 0 0 0 1 0 

Class C (Pronation) 0 0 1 0 0 

Class D (Supination) 0 1 0 0 0 

Class E (Rest) 1 0 0 0 0 

 

For such control commands to be generated, the offline 

training was done so that in real time the classifier will 

know what motion is to be performed. 
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III. MODELING AND SIMULATION 

In order to verify reference positions generated through 

EMG data analysis, simulation was performed on a solid 

model using kinematics model of the trans-humeral arm. For 

the purpose, the SolidWorks model along with PeterCorke 

Toolbox® comes in action providing the reference position 

by using the information of forward kinematics.  

A. Solid Model 

A SolidWorks model was developed in SolidWorks® for 

the system. Simulation of different motion types of the 

elbow and wrist are shown in Figure 6. This SolidWorks 

model window was used for the visual verification of the 

reference positions generated as given earlier in Section II-

D. The SolidWorks model receives the generated reference 

values from a workspace that is imported from the 

kinematics model developed in Matlab, and both the virtual 

windows were linked together. 

 

 

 

(a) 

 

 

 

(b) 

             

 

 

(c) 

Figure 6. a) Elbow Flexion b) Elbow and Wrist at rest c) Wrist 

Pronation in SolidWorks®. A virtual representation of the device 

for how it is actuated physically. Matlab® providing the 

coordinates at a certain angle with reference to forward kinematics 

already linked with Solidworks® motion to study the error 

B. Kinematics Model 

Forward kinematics helps in determining the position of the 

end effector by using different values of angles [13]. The 

desired position would not be just suggested by 

electromyographic signals but also through kinematics 

equations. In this research, one Degree of Freedom (DOF) 

each for elbow and wrist joint has been considered. The 

objective of the forward kinematic analysis is to determine 

the cumulative effect of the entire set of joint variables. A 

commonly used convention for selecting frames of reference 

in robotic applications is the Denavit- Hartenberg, or D-H 

convention [14]. The  DH parameters for the proposed 

prosthetic elbow and wrist are given in Table 2. The 

kinematics model developed in MATLAB®  was used to 

verify five reference positions, given in table 3.  

These reference positions were generated for rest and four 

types of motions.  The generated results in PeterCork are 

shown in  Figure 7 for two selective positions. The Solid 

Works® design was imported in Matlab® for processing 

through SimMechanics which was used to produce a 

mechanical model. It contains all the physical aspects such 

as weight, gravity etc. so that the real environment 

parameters are virtually tested/validated.  

Table 3: DH Parameters 

Link 

Length 

ai(mm) 

Link 

Twist 

αi 

(deg) 

Joint 

Distance 

di(mm) 

Joint 

Angle 

θi(deg) 

0 900 d1 θ1 

0 900 d2 θ2 

0 -900 0 θ3 

 

 

Table 4: Reference positions of the prosthetic 

elbow and wrist for different motion types 

Arm 

Part 

Motion 

Type 

Angular 

Position  

Elbow 

Extension -80o 

Flexion 80o 

Rest 

 
0o 

Wrist Pronation -85 o 

Supination 85 o 

 

The transformation matrix represents the general 

mathematical form of special linkages within a robot 

[15]. The general transformation equation is written as 

(1). 

 (1) 

 According to the DH-table, the link transformation 

matrices of proposed two DOF prosthetic arm (elbow 

and wrist) is given in (2). 

 

 

                          (2) 
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C. Simulation Results  

The kinematics model was simulated for all five reference 

positions i.e. Extension (-80o), Flexion (80o),Rest 

(0o),Pronation(-85o) and Supination(85o). Sample results for 

extension and supination are shown in Figure 7 for 

reference. The results show that extension is terminated at -

80o (Figure 7a) while supination is terminated at 85o (Figure 

7b). 

   

   

(a) 

 

(b) 

Fig. 7.  a)Elbow Joint at 80o representing Flexion b) Wrist Joint at 

85 o representing Pronation in PeterCorke Robotics Toolbox 

Matlab® 

IV. CONCLUSIONS 

The electromyographic signals were acquired (extracted & 

recorded) for elbow joint extension and flexion movement 

along with the wrist twist i.e. supination and pronation. 

After analyzing the obtained data, feature selection played 

an important role in data classification. Different features 

and their combinations helped to classify the raw signals. 

Artificial neural network (ANN) was used for offline 

training. A CAD model of two DOF prosthetic arm was 

developed in Solid works® and its Kinematic Model was 

built in Matlab®. Afterward, both were linked to check the 

output of the system virtually rather than developing a real-

life model. It verified that the arm joints move and reach the 

desired position as soon as the control signals from 

classified EMG data were attained. Unlike forearm, upper 

arm has minor muscle activity & motions for the elbow joint 

and forearm twist can’t be predicted very easily. Therefore, 

signal processing is a big challenge for above elbow 

amputation but more experimentation & better feature and 

classifier selection may help in resolving such problem.  
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